Sequel of spontaneous seizures after kainic acid-induced status epilepticus and associated neuropathological changes in the subiculum and entorhinal cortex
نویسندگان
چکیده
Injection of the seaweed toxin kainic acid (KA) in rats induces a severe status epilepticus initiating complex neuropathological changes in limbic brain areas and subsequently spontaneous recurrent seizures. Although neuropathological changes have been intensively investigated in the hippocampus proper and the dentate gyrus in various seizure models, much less is known about changes in parahippocampal areas. We now established telemetric EEG recordings combined with continuous video monitoring to characterize the development of spontaneous seizures after KA-induced status epilepticus, and investigated associated neurodegenerative changes, astrocyte and microglia proliferation in the subiculum and other parahippocampal brain areas. The onset of spontaneous seizures was heterogeneous, with an average latency of 15 ± 1.4 days (range 3-36 days) to the initial status epilepticus. The frequency of late spontaneous seizures was higher in rats in which the initial status epilepticus was recurrent after its interruption with diazepam compared to rats in which this treatment was more efficient. Seizure-induced neuropathological changes were assessed in the subiculum by losses in NeuN-positive neurons and by Fluoro-Jade C staining of degenerating neurons. Neuronal loss was already prominent 24 h after KA injection and only modestly progressed at the later intervals. It was most severe in the proximal subiculum and in layer III of the medial entorhinal cortex and distinct Fluoro-Jade C labeling was observed there in 75% of rats even after 3 months. Glutamatergic neurons, labeled by in situ hybridization for the vesicular glutamate transporter 1 followed a similar pattern of cell losses, except for the medial entorhinal cortex and the proximal subiculum that appeared more vulnerable. Glutamate decarboxylase65 (GAD65) mRNA expressing neurons were generally less vulnerable than glutamate neurons. Reactive astrocytes and microglia were present after 24 h, however, became prominent only after 8 days and remained high after 30 days. In the proximal subiculum, parasubiculum and entorhinal cortex the number of microglia cells was highest after 30 days. Although numbers of reactive astrocytes and microglia were reduced again after 3 months, they were still present in most rats. The time course of astrocyte and microglia proliferation parallels that of epileptogenesis.
منابع مشابه
Parvalbumin interneurons and calretinin fibers arising from the thalamic nucleus reuniens degenerate in the subiculum after kainic acid-induced seizures
The subiculum is the major output area of the hippocampus. It is closely interconnected with the entorhinal cortex and other parahippocampal areas. In animal models of temporal lobe epilepsy (TLE) and in TLE patients it exerts increased network excitability and may crucially contribute to the propagation of limbic seizures. Using immunohistochemistry and in situ-hybridization we now investigate...
متن کاملThe protective effect of carvacrol on kainic acid-induced model of temporal lobe epilepsy in male rat
Background and Objective: Temporal lobe epilepsy (TLE) is a chronic neurological disorder with spontaneous recurrent seizures and abnormal intracranial waves. Since the role of oxidative stress in the occurrence of epilepsy is inevitable, it seems that the use of antioxidants can prevent some of the complications resulting from this disease. This study was designed to assess the protective effe...
متن کاملSalvianolic Acid Improves Status Epilepticus and Learning and Memory Deficiency in Rat Model of Temporal Lobe Epilepsy
Background and Objective: Epilepsy is a long-lasting central nervous system disorder that is accompany with spontaneous seizures and insufficiency in learning and memory. Now drug treatment is the most common therapy but some patients do not research to suitable control of their seizures with current drugs. Hence, new treatment is needed to help those patients that are unaffected to existing dr...
متن کاملEpilepsy, Brain Injury, and Cell Death
Mesial temporal lobe epilepsy (TLE) represents the most frequent type of focal epilepsies. The most prominent neuropathological characteristics of TLE are severe neurodegenerations in the hippocampus (termed Ammon’s horn sclerosis) and in related brain areas such as the amygdala and entorhinal cortex. Within the hippocampus, pyramidal cells of the areas CA1 and CA3 and interneurons of the denta...
متن کاملChanges in the expression of GABAA receptor subunit mRNAs in parahippocampal areas after kainic acid induced seizures
The parahippocampal areas including the subiculum, pre- and parasubiculum, and notably the entorhinal cortex (EC) are intimately involved in the generation of limbic seizures in temporal lobe epilepsy. We investigated changes in the expression of 10 major GABAA receptor subunit mRNAs in subfields of the ventral hippocampus, ventral subiculum, EC, and perirhinal cortex (PRC) at different interva...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 63 شماره
صفحات -
تاریخ انتشار 2012